Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Матрица расстояний

Матрица расстояний

Подписчиков: 0, рейтинг: 0

Матрица расстояний — это квадратная матрица типа «объект-объект» (порядка n), содержащая в качестве элементов расстояния между объектами в метрическом пространстве.

Свойства

Свойства матрицы являются отражением свойств самих расстояний:

  1. симметричность относительно диагонали, то есть ;
  2. отражение свойства тождественности расстояния в матрице расстояний проявляется в наличии 0 по диагонали матрицы, так как расстояние объекта с самим собой очевидно равно 0, а также в наличии нулевых значений для абсолютно сходных объектов;
  3. значения расстояний в матрице всегда неотрицательны
  4. неравенство треугольника принимает форму для всех , и .

В общем виде матрица выглядит так:


В широком смысле расстояния являются отражением такого понятия как различие, что двойственно понятию сходства, а элементы матрицы различия (в общем виде — матрицы дивергенций) двойственны элементам матрицы сходства (в общем виде — матрицы конвергенций). Связь между мерой сходства и мерой различия можно записать как , где F — мера различия; K — мера сходства. Следовательно, все свойства мер сходства можно экстраполировать на соответствующие им меры различия с помощью простого преобразования и наоборот.
Визуально отношения между объектами можно представить с помощью графовых алгоритмов кластеризации. Можно сказать, что расстояния используются намного чаще, чем меры сходства: их чаще реализуют в статистических программах (Statistica, SPSS и др.) в модуле кластерного анализа.

Расстояния

Известно, что существует обобщённая мера расстояний, предложенная Германом Минковским:

В вышеуказанное семейство расстояний входит:

Существуют используемые расстояния и вне данного семейства. Наиболее известным является расстояние Махаланобиса.

Также интересно в качестве удачной иллюстрации связи мер сходства и различия расстояние Юрцева, двойственное мере сходства Браун-Бланке:

Пример

На плоскости расположено шесть различных точек (см. изображение). В качестве метрики выбрано расстояние Евклида в пикселях.

Точки на плоскости

Соответствующая матрица расстояний будет равна

a b c d e f
a 0 184 222 177 216 231
b 184 0 45 123 128 200
c 222 45 0 129 121 203
d 177 123 129 0 46 83
e 216 128 121 46 0 83
f 231 200 203 83 83 0

Полученную матрицу можно изобразить в виде тепловой карты. Здесь более тёмный цвет соответствует меньшему расстоянию между точками.

Матрица расстояний в виде тепловой карты

Новое сообщение