Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Дедуктивное умозаключение
Деду́кция (лат. deductio «выведение», также дедукти́вное умозаключе́ние, силлоги́зм) — вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического следования. В дедукции вывод строится от общих положений к частным случаям. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений (общее), а концом — следствия из посылок, теоремы (частное). Если посылки дедукции истинны, то истинны и её следствия. Дедукция — основное средство доказательства.
Аксиоматический метод — способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории. См. также индукция.
Таким образом, дедукция — метод мышления, следствием которого является логический вывод, истинность которого гарантируется истинностью посылок. Также может определяться логико-методологическая процедура, посредством которой осуществляется переход от общего к частному в процессе рассуждения.
Пример простейшего дедуктивного умозаключения:
Все люди смертны. | |
Сократ — человек. | |
дедукция | Сократ смертен. |
Содержание
Условно-категорические умозаключения
Умозаключения, в которых одна предпосылка является условным суждением, а вторая предпосылка совпадает с основанием или следствием условного суждения или же с результатом отрицания основания или следствия условного суждения.
Истинность основы влечёт истинность следствия, а отрицание следствия влечёт отрицание основы.
Формы правильных модусов (видов) условно-категорических заключений:
- утверждающий модус (лат. modus ponens):
- отрицающий модус (лат. modus tollens):
Разделительно-категорические умозаключения
Умозаключения, в которых одна из предпосылок является разделительным суждением, а вторая совпадает с одним из членов дизъюнктивного суждения (1) или отрицает все, кроме одного (2). В заключении, соответственно, отрицаются все члены, кроме указанного во второй предпосылке (1), или утверждается пропущенный член (2).
Формы правильных модусов разделительно-категорических заключений
- Утверждающе-отрицающий модус (лат. modus ponendo-tollens): (здесь требуется строго разделительное суждение). То есть: первая посылка: либо A, либо B, либо C …, вторая посылка: B; заключение (вывод): следовательно, не A, не C … .
- Отрицающе-утверждающий модус (лат. modus tollendo-ponens): . То есть: первая посылка: A или B или C …, вторая посылка: не A, не C …; заключение (вывод): следовательно, B.
Условные умозаключения
Умозаключения, посылки и заключения которых — условные суждения.
- Контрапозиция: . То есть: посылка: если A, то B; заключение: следовательно, если не B, то не A. Например, если животное млекопитающее, то оно является позвоночным. Следовательно, если какое-либо животное не является позвоночным, то оно не является млекопитающим.
- Сложная контрапозиция: . То есть: посылка: если A и B, то C; заключение: следовательно, если A и не C, то не B.
- Транзитивность: . То есть: первая посылка: если A, то B; вторая посылка: если B, то C; заключение: следовательно, если A, то C.
Дилеммы
Особый вид умозаключений из двух условных суждений и одного разделительного.
Виды правильных дилемм:
- конструктивные:
(то есть: первая посылка: если A, то C; вторая посылка: если B, то C; третья посылка: A или B; заключение: следовательно, C);
- (сложная)
(то есть: первая посылка: если A, то B; вторая посылка: если C, то D; третья посылка: A или C; заключение: следовательно, B или D);
- деструктивные:
(то есть: первая посылка: если A, то B; вторая посылка: если A, то C; третья посылка: не B или не C; заключение: следовательно, не A);
- (сложная)
(то есть: первая посылка: если A, то B; вторая посылка: если C, то D; третья посылка: не B или не D; заключение: следовательно, не A или не C).
Интересные факты
«Дедуктивный» метод Шерлока Холмса основан на типичных абдуктивных умозаключениях.
См. также
Литература
- Дедукция // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Большая советская энциклопедия, ред. Прохоров, А. М.; Байбаков, Н. К.; Благонравов, А. А. — М.: Советская Энциклопедия, 1969—1978.
- Кондаков Н. И. Логический словарь-справочник. — М.: Наука, 1975. — 720 с.
- Ивлев Ю. В. Учебник логики: Семестровый курс: Учебник. — М.: Дело, 2003. — 208 с. — ISBN 5-7749-0317-6.
- Бочаров В. А., Маркин В. И. Основы логики: Учебник. — М.: ИНФРА-М, 2001. — 296 с. — ISBN 5-16-000496-3.
- Ионин Л. Г. Социология культуры: Учебник. — М.: ГУ ВШЭ, 2004. — 432 стр. — ISBN 5-7598-0252-6.
Ссылки
В библиографических каталогах |
---|
Законы логики
| ||||||
---|---|---|---|---|---|---|
Законы |
|
|||||
Принципы и свойства законов |