Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Гамма-аминомасляная кислота

Подписчиков: 0, рейтинг: 0
Гамма-​аминомасляная кислота
Изображение химической структуры Изображение молекулярной модели
Общие
Систематическое
наименование
4-​аминобутановая кислота
Хим. формула C4H9O2N
Физические свойства
Состояние твёрдое
Молярная масса 103,120 г/моль
Плотность 1,11 г/см³
Термические свойства
Температура
 • плавления 203 °C
 • кипения 247,9 °C
Химические свойства
Константа диссоциации кислоты 4,05
Растворимость
 • в воде 130 г/100 мл
Классификация
Рег. номер CAS 56-12-2
PubChem
Рег. номер EINECS 200-258-6
SMILES
InChI
RTECS ES6300000
ChEBI 16865
ChemSpider
Безопасность
ЛД50 12 680 мг/кг (мыши, перорально)
Токсичность слаботоксичное вещество, ирритант
Пиктограммы ECB Пиктограмма «Xi: Раздражитель» системы ECB
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе
Метаболизм ГАМК, вовлечение глиальных клеток
Производство, высвобождение, действие и деградация ГАМК при стереотипном ГАМКергическом синапсе
Экспрессию мРНК эмбрионального варианта ГАМК-продуцирующего фермента GAD67 в корональном отделе мозга однодневной крысы Wistar с наивысшей экспрессией в субвентрикулярной зоне (svz)

γ-Аминомасляная кислота (гамма-аминомасляная кислота, сокр. ГАМК) — органическое соединение, непротеиногенная аминокислота, важнейший тормозной нейромедиатор центральной нервной системы (ЦНС) человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.

Получение

Гамма-аминомасляная кислота в организме позвоночных образуется в центральной нервной системе из L-глутаминовой кислоты с помощью фермента глутаматдекарбоксилазы.

Биологическая активность

В нервной системе

γ-Аминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. При выбросе ГАМК в синаптическую щель происходит активация ионных каналов ГАМКA- и ГАМКC-рецепторов, приводящая к ингибированию нервного импульса. Лиганды рецепторов ГАМК рассматриваются как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезни Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия.

Установлено, что ГАМК является основным нейромедиатором, участвующим в процессах центрального торможения.

Вместе с тем, ГАМК не связана исключительно с синаптическим торможением в ЦНС. На ранних этапах развития мозга ГАМК опосредует преимущественно синаптическое возбуждение. В незрелых нейронах ГАМК проявляет возбуждающие и деполяризующие свойства в синергичном взаимодействии с глутаматом. Возбуждающее поведение ГАМК обусловлено высокой внутриклеточной концентрацией ионов хлора, накапливаемого при помощи транспортного белка NKCC, таким образом, открытие ГАМК-рецепторов приводит к потере этих анионов и возникновению ВПСП на мембране нейрона. Во взрослом мозге возбуждающая функция ГАМК сохраняется лишь частично, уступая место синаптическому торможению.

Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение. В экстремальных условиях при большом недостатке энергии ГАМК окисляется в мозге бескислородным путём, при этом выделяется много энергии и нормализуется содержание гистамина и серотонина в мозге.

Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторами, которые в последнее время подразделяют на ГАМКA- и ГАМКB-рецепторы и др. В механизме действия целого ряда центральных нейротропных веществ (снотворных, противосудорожных, судорожных и др.) существенную роль играет их агонистическое или антагонистическое взаимодействие с ГАМК-рецепторами. Связываясь с α- и γ-субъединицами ГАМК-А рецептора, бензодиазепины, барбитураты и некоторые другие депрессанты ЦНС (золпидем, метаквалон) потенцируют, а флумазенил и бемегрид - ослабляют эффекты ГАМК.

Наличие ГАМК в ЦНС было обнаружено в середине 1950-х годов, в 1963 году осуществлён её синтез (Krnjević K., Phillis J. W.). В конце 1960-х годов под названием «Гаммалон» ГАМК была предложена для применения в качестве лекарственного средства за рубежом, затем — под названием «Аминалон» — в России.

За пределами нервной системы

В 2007 году была впервые описана ГАМКергическая система в эпителии дыхательных путей. Система активируется под воздействием аллергенов и может играть роль в механизмах астмы.

Другая ГАМКергическая система описана в яичках, она может влиять на работу клеток Лейдига.

Исследователи больницы St. Michael, Торонто, Канада, установили в июле 2011 года, что ГАМК играет роль в предотвращении и, возможно, обратном развитии сахарного диабета у мышей.

ГАМК обнаружена в бета-клетках поджелудочной железы в концентрациях, сопоставимых с таковыми в ЦНС. Секреция ГАМК в бета-клетках происходит совместно с секрецией инсулина. ГАМК опосредованно ингибирует секрецию глюкагона, связанную с повышением концентрации глюкозы в крови.

Пищевая добавка

ГАМК в виде пищевых добавок применяется при умственной отсталости, после инсульта и травм мозга, для лечения энцефалопатии и ДЦП.

Традиционно считалось, что экзогенная ГАМК не проникает через гематоэнцефалический барьер, однако более современные исследования ставят это утверждение под сомнение. Во-первых, есть свидетельства того, что ГАМК транспортируется в мозг с помощью специфических мембранных транспортеров GAT2 и BGT-1. А во-вторых, экзогенная ГАМК в форме пищевых добавок может оказывать ГАМКергические эффекты и на кишечную нервную систему[неизвестный термин], которая, в свою очередь, стимулирует выработку эндогенной ГАМК.

Это согласуется с хорошо изученным влиянием микробиоты кишечника на настроение, стресс и возбуждение и данными о широком распространении рецепторов ГАМК по всей ЭНС кишечника.

См. также

Литература

Ссылки


Новое сообщение